deepr.examples.movielens.layers package
Submodules
deepr.examples.movielens.layers.average module
Average Model.
- class deepr.examples.movielens.layers.average.AddBias[source]
Bases:
Layer
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- deepr.examples.movielens.layers.average.AverageModel(vocab_size, dim, keep_prob, share_embeddings=True, train_embeddings=True, train_biases=True, average_with_bias=False, project=False, reduce_mode='average')[source]
Average Model.
- class deepr.examples.movielens.layers.average.Logits(vocab_size, dim, reuse=True, trainable=True)[source]
Bases:
Layer
Computes logits as <u, i> + b_i.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.average.Projection(variable_name, reuse=False, transpose=False)[source]
Bases:
Layer
Apply symmetric transform to non-projected user embeddings.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.average.UserEmbedding(mode, keep_prob, reduce_mode='average')[source]
Bases:
Layer
Compute Weighted Sum (randomly masking inputs in TRAIN mode).
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
deepr.examples.movielens.layers.bpr module
BPR Loss with biases.
deepr.examples.movielens.layers.losses module
Losses.
- class deepr.examples.movielens.layers.losses.L2Loss[source]
Bases:
Layer
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
deepr.examples.movielens.layers.multi module
MultiLogLikelihood Loss with Complementarity Sampling.
deepr.examples.movielens.layers.ns module
Negative Sampling Loss with biases.
deepr.examples.movielens.layers.transformer module
Transformer Model.
- class deepr.examples.movielens.layers.transformer.Logits(vocab_size, dim)[source]
Bases:
Layer
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
deepr.examples.movielens.layers.vae module
VAE Model.
- class deepr.examples.movielens.layers.vae.AddBias(variable_name, seed)[source]
Bases:
Layer
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.vae.Decode(dims, activation, seed)[source]
Bases:
Layer
Decode tensor.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.vae.Encode(dims, activation, seed)[source]
Bases:
Layer
Encode tensor, apply KL constraint.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.vae.GaussianNoise(mode, seed)[source]
Bases:
Layer
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.vae.Logits(vocab_size, dim, trainable, reuse, seed)[source]
Bases:
Layer
Compute logits given user and create target item embeddings.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- class deepr.examples.movielens.layers.vae.Projection(variable_name, seed)[source]
Bases:
Layer
Apply symmetric transform to non-projected user embeddings.
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]
- deepr.examples.movielens.layers.vae.VAEModel(vocab_size, dims_encode=(600, 200), dims_decode=(200, 600), keep_prob=0.5, train_embeddings=True, project=False, share_embeddings=False, seed=42)[source]
VAE Model.
- Return type:
- class deepr.examples.movielens.layers.vae.WeightedSum(mode, keep_prob, seed)[source]
Bases:
Layer
Compute Weighted Sum (randomly masking inputs in TRAIN mode).
- forward(tensors, mode: Optional[str] = None)
Forward method on one Tensor or a tuple of Tensors.
- Parameters:
tensors (Union[tf.Tensor, Tuple[tf.Tensor, ...]]) –
n_in = 1: one tensor (NOT wrapped in a tuple)
n_in > 1: a tuple of tensors
mode (str, optional) – Description
- Returns:
n_out = 1: one tensor (NOT wrapped in a tuple)
n_out > 1: a tuple of tensors
- Return type:
Union[tf.Tensor, Tuple[tf.Tensor, …]]