deepr.prepros.Serial
- class deepr.prepros.Serial(*preprocessors, fuse=True, num_parallel_calls=None)[source]
Chain preprocessors to define complex preprocessing pipelines.
It will apply each preprocessing step one after the other on each element. For performance reasons, it fuses
MapandFilteroperations into single tf.data calls.For an example, see the following snippet:
import deepr def gen(): yield {"a": [0], "b": [0, 1]} yield {"a": [0, 1], "b": [0]} yield {"a": [0, 1], "b": [0, 1]} prepro_fn = deepr.prepros.Serial( deepr.prepros.Map(deepr.layers.Sum(inputs=("a", "b"), outputs="c")), deepr.prepros.Filter(deepr.layers.IsMinSize(inputs="a", outputs="a_size", size=2)), deepr.prepros.Filter(deepr.layers.IsMinSize(inputs="b", outputs="b_size", size=2)), ) dataset = tf.data.Dataset.from_generator(gen, {"a": tf.int32, "b": tf.int32}, {"a": (None,), "b": (None,)}) reader = deepr.readers.from_dataset(prepro_fn(dataset)) expected = [{"a": [0, 1], "b": [0, 1], "c": [0, 2]}]
- preprocessors
Positional arguments of
Preproinstance or Tuple / List / Generator of prepro instances
Methods
__init__(*preprocessors[, fuse, ...])apply(dataset[, mode])Pre-process a dataset