deepr.prepros.Filter
- class deepr.prepros.Filter(predicate, on_dict=True, modes=None)[source]
Filter a dataset keeping only elements on which predicate is True
A
Filter
instance applies apredicate
to all elements of a dataset and keeps only element for which predicate returns True.By default, elements are expected to be dictionaries. You can set
on_dict=False
if your dataset does not yield dictionaries.Because some preprocessing pipelines behave differently depending on the mode (TRAIN, EVAL, PREDICT), an optional argument can be provided. By setting modes, you select the modes on which the map transformation should apply. For example:
>>> from deepr import readers >>> from deepr.prepros import Filter >>> def gen(): ... yield {"a": 0} ... yield {"a": 1} >>> raw_dataset = tf.data.Dataset.from_generator(gen, {"a": tf.int32}, {"a": tf.TensorShape([])}) >>> list(readers.from_dataset(raw_dataset)) [{'a': 0}, {'a': 1}] >>> def predicate(x): ... return {"b": tf.equal(x["a"], 0)} >>> prepro_fn = Filter(predicate, modes=[tf.estimator.ModeKeys.TRAIN]) >>> raw_dataset = tf.data.Dataset.from_generator(gen, {"a": tf.int32}, {"a": tf.TensorShape([])}) >>> dataset = prepro_fn(raw_dataset, tf.estimator.ModeKeys.TRAIN) >>> list(readers.from_dataset(dataset)) [{'a': 0}]
>>> dataset = prepro_fn(raw_dataset, tf.estimator.ModeKeys.PREDICT) >>> list(readers.from_dataset(dataset)) [{'a': 0}, {'a': 1}]
If the mode is not given at runtime, the preprocessing is applied.
>>> dataset = prepro_fn(raw_dataset) >>> list(readers.from_dataset(dataset)) [{'a': 0}]
- predicate
Predicate function, returns either a tf.bool or a dictionary with one key.
- Type:
Callable
- modes
Active modes for the map (will skip modes not in modes). Default is None (all modes are considered active modes).
- Type:
Iterable[str], Optional
Methods
__init__
(predicate[, on_dict, modes])apply
(dataset[, mode])Pre-process a dataset
Attributes
tf_predicate
Return final predicate function.