deepr.layers.Parallel
- class deepr.layers.Parallel(*layers)[source]
Apply layers in parallel on consecutive inputs.
If you have 2 layers F(a, b) -> x and G(c) -> (y, z), it defines a layer H(a, b, c) -> (x, y, z). For example:
layer1 = Add(inputs="x1, x2", outputs="y1") layer2 = OffsetLayer(offset=1, inputs="x3", outputs="y2") layer = deepr.layers.Parallel(layer1, layer2) layer((1, 1, 2)) # (2, 3) layer({"x1": 1, "x2": 1, "x3": 2}) # {"y1": 2, "y2": 3}
Methods
__init__
(*layers)forward
(tensors[, mode])Forward method of the layer
forward_as_dict
(tensors[, mode])Forward method on a dictionary of Tensors.